

Exercise

• Find $P(x_t, x_{t+k}, z_0, \ldots, z_T)$

Kalman Smoother

- = smoother we just covered instantiated for the particular case when $P(X_{t+1} | X_t)$ and $P(Z_t | X_t)$ are linear Gaussians
- We already know how to compute the forward pass (=Kalman filtering)
- Backward pass:

$$b_t(x_t) = \int_{x_{t+1}} P(x_{t+1}|x_t) P(z_{t+1}|x_{t+1}) b_{t+1}(x_{t+1}) dx_{t+1}$$

Combination:

 $P(x_t, z_0, \dots, z_T) = a_t(x_t)b_t(x_t)$

Kalman Smoother Backward Pass

- TODO: work out integral for b_t
- TODO: insert backward pass update equations
- TODO: insert combination \rightarrow bring renormalization constant up front so it's easy to read off P(X_t | Z₀, ..., Z_T)

