Smoother

Pieter Abbeel
UC Berkeley EECS

- Note: by now it should be clear that the "u" variables don't really change anything conceptually, and going to leave them out to have less symbols appear in our equations.

Filtering

$P\left(x_{2} \mid z_{0}, z_{1}, z_{2}\right) \propto P\left(x_{2}, z_{0}, z_{1}, z_{2}\right)$
$=\sum_{x_{0}, x_{1}} P\left(z_{2} \mid x_{2}\right) P\left(x_{2} \mid x_{1}\right) P\left(z_{1} \mid x_{1}\right) P\left(x_{1} \mid x_{0}\right) P\left(z_{0} \mid x_{0}\right) P\left(x_{0}\right)$
$\begin{array}{r}=P\left(z_{2} \mid x_{2}\right) \sum_{x_{1}} P\left(x_{2} \mid x_{1}\right) P\left(z_{1} \mid x_{1}\right) \sum_{x_{0}} P\left(x_{1} \mid x_{0}\right) \frac{P\left(z_{0} \mid x_{0}\right) P\left(x_{0}\right)}{P\left(x_{0}, z_{0}\right)} \\ \hline P\left(x_{1}, z_{0}\right)\end{array}$
$P\left(x_{1}, z_{0}\right)$
$P\left(x_{1}, z_{0}, z_{1}\right)$

$$
P\left(x_{2}, z_{0}, z_{1}\right)
$$

$$
\overline{P\left(x_{2}, z_{0}, z_{1}, z_{2}\right)}
$$

- Generally, recursively compute:

$$
\begin{aligned}
P\left(x_{t+1}, z_{0}, \ldots, z_{t}\right) & =\sum_{x_{t}} P\left(x_{t+1} \mid x_{t}\right) P\left(x_{t}, z_{0}, \ldots, z_{t}\right) \\
P\left(x_{t+1}, z_{0}, \ldots, z_{t}, z_{t+1}\right) & =p\left(z_{t+1} \mid x_{t+1}\right) P\left(x_{t+1}, z_{0}, \ldots, z_{t}\right)
\end{aligned}
$$

- Generally, recursively compute:
- Forward: (same as filter)
$P\left(x_{t+1}, z_{0}, \ldots, z_{t}\right)=\sum_{r} P\left(x_{t+1} \mid x_{t}\right) P\left(x_{t}, z_{0}, \ldots, z_{t}\right)$
$P\left(x_{t+1}, z_{0}, \ldots, z_{t}, z_{t+1}\right)=p\left(z_{t+1} \mid x_{t+1}\right) P\left(x_{t+1}, z_{0}, \ldots, z_{t}\right)$

- Backward:

$P\left(z_{t+1}, \ldots, z_{T} \mid x_{t+1}\right)=P\left(z_{t+1} \mid x_{t+1}\right) P\left(z_{t+2}, \ldots, z_{T} \mid x_{t+1}\right)$
$P\left(z_{t+1}, \ldots, z_{T} \mid x_{t}\right)=\sum_{x_{t+1}} P\left(x_{t+1} \mid x_{t}\right) P\left(z_{t+1}, \ldots, z_{T} \mid x_{t+1}\right)$

- Combine: $P\left(x_{t}, z_{0}, \ldots, z_{T}\right)=P\left(x_{t}, z_{0}, \ldots, z_{t}\right) P\left(z_{t+1}, \ldots, z_{T} \mid x_{t}\right)$

Complete Smoother Algorithm

- Forward pass (= filter):

1. Init: $a_{0}\left(x_{0}\right)=P\left(z_{0} \mid x_{0}\right) P\left(x_{0}\right)$
2. For $t=0, \ldots, T-1$

- $a_{t+1}\left(x_{t+1}\right)=P\left(z_{t+1} \mid x_{t+1}\right) \sum_{x_{t}} P\left(x_{t+1} \mid x_{t}\right) a_{t}\left(x_{t}\right)$
- Backward pass:

1. Init: $b_{T}\left(x_{T}\right)=1$
2. For $t=T-1, \ldots, 0$

- $b_{t}\left(x_{t}\right)=\sum_{x_{t+1}} P\left(x_{t+1} \mid x_{t}\right) P\left(z_{t+1} \mid x_{t+1}\right) b_{t+1}\left(x_{t+1}\right)$
- Combine:

1. For $t=0, \ldots, T$

- $P\left(x_{t}, z_{0}, \ldots, z_{T}\right)=P\left(x_{t}, z_{0}, \ldots, z_{t}\right) P\left(x_{t+1}, z_{t+1}, \ldots, z_{T} \mid x_{t}\right)=a_{t}\left(x_{t}\right) b_{t}\left(x_{t}\right)$

Note I: computes for all times t in one forward+backward pass
Note 2: can find $P\left(x_{t} \mid z_{0}, \ldots, z_{T}\right)$ by simply renormalizing

Important Variation

- Find $P\left(x_{t}, x_{t+1}, z_{0}, \ldots, z_{T}\right)$
- Recall: $a_{t}\left(x_{t}\right)=P\left(x_{t}, z_{0}, \ldots, z_{T}\right)$
$b_{t}\left(x_{t}\right)=P\left(z_{t+1}, \ldots, z_{T} \mid x_{t}\right)$
- So we can readily compute

```
P(xt, \mp@subsup{x}{t+1}{},\mp@subsup{z}{0}{},\ldots,\mp@subsup{z}{T}{})
=P(\mp@subsup{x}{t}{},\mp@subsup{z}{0}{},\ldots,\mp@subsup{z}{t}{})P(\mp@subsup{x}{t+1}{}|\mp@subsup{x}{t}{},\mp@subsup{z}{0}{},\ldots,\mp@subsup{z}{t}{})P(\mp@subsup{z}{t+1}{},\ldots,\mp@subsup{z}{T}{}|\mp@subsup{x}{t+1}{},\mp@subsup{x}{t}{},\mp@subsup{z}{0}{},\ldots,\mp@subsup{z}{t}{})\quad\mathrm{ (Law of total probability)}
=P(\mp@subsup{x}{t}{},\mp@subsup{z}{0}{},\ldots,\mp@subsup{z}{t}{})P(\mp@subsup{x}{t+1}{}|\mp@subsup{x}{t}{})P(\mp@subsup{z}{t+1}{},\ldots,\mp@subsup{z}{T}{}|\mp@subsup{x}{t+1}{})
= att (xt)P(\mp@subsup{x}{t+1}{}|\mp@subsup{x}{t}{})\mp@subsup{b}{t+1}{}(\mp@subsup{x}{t+1}{})
```

(Markov assumptions) (definitions a, b)

Exercise

- Find $P\left(x_{t}, x_{t+k}, z_{0}, \ldots, z_{T}\right)$

Kalman Smoother

- = smoother we just covered instantiated for the particular case when $P\left(x_{t+1} \mid x_{t}\right)$ and $P\left(z_{t} \mid x_{t}\right)$ are linear Gaussians
- We already know how to compute the forward pass (=Kalman filtering)
- Backward pass:

$$
b_{t}\left(x_{t}\right)=\int_{x_{t+1}} P\left(x_{t+1} \mid x_{t}\right) P\left(z_{t+1} \mid x_{t+1}\right) b_{t+1}\left(x_{t+1}\right) d x_{t+1}
$$

- Combination:

$$
P\left(x_{t}, z_{0}, \ldots, z_{T}\right)=a_{t}\left(x_{t}\right) b_{t}\left(x_{t}\right)
$$

Kalman Smoother Backward Pass

- TODO: work out integral for b_{t}
- TODO: insert backward pass update equations
- TODO: insert combination \rightarrow bring renormalization constant up front so it's easy to read off $P\left(x_{t} \mid Z_{0}, \ldots, z_{T}\right)$

Matlab code data generation example

- $\mathrm{A}=\left[\begin{array}{llll}0.99 & 0.0074 ; & -0.0136 & 0.99\end{array}\right] ; \mathrm{C}=[11 ;-1+1]$;
- $x(:, 1)=[-3 ; 2]$;
- Sigma_w = diag([.3 .7]); Sigma_v = [2 .05; . 05 1.5];
- $w=r a n d n(2, T) ; w=s q r t m\left(S i g m a _w\right)^{*} w ; v=r a n d n(2, T) ; v=s q r t m\left(S i g m a _v\right)^{*} v ;$
- for $\mathrm{t}=1: \mathrm{T}-1$

$$
x(:, t+1)=A^{*} x(:, t)+w(:, t) ;
$$

$$
z(:, t)=C^{*} x(:, t)+v(:, t) ;
$$

end

- \% now recover the state from the measurements
- $P _0=\operatorname{diag}([100100]) ; x 0=[0 ; 0]$;
- \% run Kalman filter and smoother here
- \% + plot

Kalman filter/smoother example

